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We consider in the following a membrane shell, with one or two rigid 
heads, in the state of equilibrium with large displacements and deforma- 
tions; the shape of the shell in the unloaded state is defined by rota- 
tion of an arbitrary smooth contour, and it is supposed to be loaded by 
internal Pressure, varying in axial direction, and by forces applied to 
the heads. The material is considered to be incompressible, and its 
mechanical properties are determined by the mutual dependence between 
the stresses and the true (logarithmic) deformations. In addition to the 
hypotheses, which represent the foundation for the relations connecting 
these quantities with each other (see [ 1,2 I), the conventional assump- 
tions are used, generally accepted in the theory of thin membrane shells. 
Similar problems were studied earlier (see bibliography in 13 3 and 
E 4 I) with some specific simplified formulations, like the case of in- 
extensible material or the case of “equal strength”, etc. We shall de- 
rive below the fundamental systems of equations, to the solution of 
which the problem is reducible, and the case of a shell of originally 
cylindrical shape will be considered in detail. This latter problem was 
discussed earlier for the case of uniform pressure [ 4 1. References [ 5 1 
to [ 7 1 deal, on the basis of the same fundamental assumptions. with the 
problem of deformation of a membrane loaded bs uniform Pressure. 

1. Basic conditions and relationships. Two zones are formed 
in a shell in the most general case of equilibrium: a zone of tension 
and a zone of “folding” I3 1 . ‘Ihe former is characterized by appearance 
of positive principal curvatures and positive principal stresses, while 
in the latter the circumferential stress is to be considered equal to 
zero, the shell shows folds, and there arises some kind of a system of 
filaments under transverse forces and external tension. 
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Consider a shell (Fig. 11, referred to a system of dimensionless 

cylindrical coordinates x 8 z invariably fixed 
at one of the apexes. Call 6 and n the values 
of x and y, respectively, for the undeformed 
shell. ‘Ihe relations connecting these coordi- 
nates with the corresponding dimensional co- 
ordinates X, Y, r, 5 shall be stated by means 
of the formulas 

where R, represents some characteristic 
initial dimension of the shell, while A is an 
arbitrary dimensionless parameter. 

‘Jhe initial shell profile shall be given 
by the formula 

rl = @ (8 

The principal “true” extensions and shears 

sl = In (1 + Ed), 62 = In (1 + e2), 

Fig. 1. 

(1.2) 
are defined by 

83 = in (1 + a) 

where el, e2, e3 are the usual extension components. ‘Ihe principal shear 
stresses are 

- z 61 G2 - 
12=-7--r 223 

62 0s = 
r31 

53-Q 
2 9 = --J--- (1.4) 

where o1 and o2 are the meridional and the circumferential stress, 
respectively. 

The diagram of the “true” shear shall be approximated by the curve 

y = sign z -$ 
I I 

r/t* 
(1.5) 

where K and p are constants derived from the conditions for the best 
approximation. Replacing y by the principal shear of maximum magnitude 
and r by the corresponding principal shear stress with u3 assumed to be 
zero, we find 

px = (e1 - E3)P for lPll>,/P2l 

pa = fez - 83)" for IPzJZlpll (I 
P1= 211' % pz = g> (1.6) 

Note that if we assume p = 1 we will have to do with an elastic shell 
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of incompressible material; the difference between the two cases dis- 

appears, P 1 and pz follow directly from (1.61, and K becomes the shear 
modulus. 

Assuming that the principal shear stresses are proportional to the 
principal true shears, we find that 

Pl &I - 62 -= 
pz 62 -83 

‘Ibe condition of incompressibility of the material gives 

El 3 E2 -j- ES = 0 

We may use instead of (1.5) an analogously approximated relationship 
between the stress intensity oi and the intensity c i of the “true” de- 

formations 

where Ki and ,Q are Constants. 

Ei -_ 
oi LiiL 

i ! 1yi (13 

Then replacing by pI and pz respectively, . . 
the quantities o1 and 02, referred to Ki, and using (1.7) instead of 

11.61, we obtain 

f1.10) 

Note that, inasmuch as u3 = 0 and the material is incompressible 

q = 1/2 pqJl - (&)2 + ((J2 _ (542 + (us - cq2 = l/al2 + a2 - Gi 
(1.11) 

ei _ + ),/&* _ E2)2 + (8, - e3)2 + (83 - El)” -- -+ v-Q2 + a2 + &2R3 

In this case we arrive at the relations valid for an elastic shell by 
putting K, equal to the modulus of elasticity and p equal to 1. 

Denote by: S, the curvilinear coordinate measured along the arc of 
the meridian after deformation; S,, the same coordinate before deforma- 

tion; H the thickness of the shell after deformation; and W, its value 
in the initial state. ‘Iben we will have in the zone of tension 

x-r 2 1 H---N* e,=-=_- , 
r E 

e,=-.----_-h-l 
fh 

where C# is the angle between the tangent to the meridian curve and the 
plane normal to the axis of the shell, while $ represents the value of 
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the same angle for the initial shape of the shell and h is the latter's 
dimensionless thickness. The formulas for el and e3 can be used also in 
establishing expressions for the deformations in the folded zone. Ulti- 
mately, we obtain for the zone in tension 

E 

1 e2 = In 2. 
E ’ 

E$ = In h (1.12) 

where, by virtue of (1.2), cos $is a given function of [. 

2. Fundamental systems of eqaations. The equilibrium equations 
of a shell element in the zone of extension can be written, in the case 
of variable shell thickness and pressure, in terms of dimensionless co- 
ordinates and quantities, in the following manner: 

The function q(y) represents here the pressure intensity. Taking into 
account that 

d y 
z =tanrp (2.2) 

we can derive from Equations (1.7), (1.8), (1.12), (2.1), taken in con- 
junction with one of the relations (1.6), a system of four differential 
equations of the first order for x, y, q5 and h considered as functions 
of 4 at a given Q(y). In the case of p1 2 p2 the system just mentioned 
will be of the form 

dx dy 
G= 

E cos cp E sincp -- -- 
xh cos ‘Ic1 ’ YQ= xh cos 1c) 

dv 
2-g,= xh cos I# 

E (ln~~‘[~(In~)l--P-~In~] (2 3) 
. 

dh 
z= 

px2hcos~-~z[p+In(x2h/E_2)] cosrp 

~“5 [W + In (xh2 / 01 cos $ 

The dimensionless expressions for the stresses will be 

p1 = (In A)‘, p2 = (In &)p-l In -$ (2.4) 

In the case of p2 > p1 the last two formulas of the system (2.3) are 
to be replaced by the following: 

dh 
-z-%= 

xzh(pIn~-3lnh)cosQ-~~(p1nx~--31nh-1nx~In$-)cosrp 

z2t [3 In + + (p - In -&) ln y] cos q 



1622 A.S. Grigor’ev 

where 

‘pl = (In $)P-l ln& ) p2 = (In -&) (2.6) 

Considering the folded zone, we introduce the concept of a certain 
defining surface, the surface which would be generated by a system of 
filaments under pressure, acting in the folded zone of the real shell. 
At one end this system of filaments absorbs the tension corresponding to 
the meridional stresses in the zone under extension at p2 = 0, at the 
other end the filaments are attached to the rigid head of a given radius. 

In the following we shall denote, with reference to the folded zone, 
by x and y the coordinates of the determining surface and by $ the angle 
between the tangent to its meridian curve and the plane normal to the 
axis of the shell. Disregarding the difference in curvatures of differ- 
ent meridians of the actual middle surface for one and the same y, con- 
sidering the slope angles of their tangents to be equal to $ and assum- 
ing that the dimensionless thickness of the shell and the amount of the 
meridional stress do not vary with varying 0, we can obtain the funda- 
mental system of equations for the determination of x, y, C$ and h in 
terms of c, using the same original equations and relationships as in 
the zone under extension. To this end we have to take 

pz = 0, 82 - ES = 0 (2.7) 

The latter relation will be used for determination of c2 inasmuch as, 
with reference to the folded zone, the second of Formulas (1.12) cannot 
be used any mOre. 

As a result of the transformations we obtain the system 

dx 
-= eos q & sin cp 

dk 
-=- 

h2eoszj,’ dg h2 cos ‘ic) 

dv Q &f 
(2.8) 

dE= A*h3 (- 3 In h)F cos 11, ’ 
~z(-31n~)~~ = c 

where c is a constant to be determined from the conditions of continu- 
ity of h at the separation line between the two zones. 

We note that the same system can be obtained also immediately from 
the equilibrium equations of an element of the folded zone in connection 
with the condition (1.81, the first 
(1.121, the first of Formulas (2.4) 
assumptions and simplifications are 
dicated above. 

and the last of the relations 
and the equalities (2.7), if the 
taken into account which we have in- 

In each actual problem, i.e. for a definite law of variation of 
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pressure, for any given material and given initial shape and correspond- 
ing boundary conditions, we obviously can obtain the solution by means 
of numerical integration of the aforementioned fundamental systems and 
thus determine the shape and the thickness of the shell as well as the 
principal stresses. 

The separation line between regions in the zone of extension is de- 
fined as the parallel along which pz = pl, the separation line between 
the zones is determined by the condition p2 = 0 applied to Equations 
(2.3). Ihe continuity conditions for x, y, + and h serve as matching 
conditions along the separation lines. 

If the shell has one head only, with the origin of the coordinates 
located at the apex of the head (see Fig. l), we shall have at this apex 

x=y=,-_+o, h = ho 

Rajmoving the indeterminacy, we find 

where he must be considered as a parameter. 

We note that if the shell is loaded by uniform pressuxe only, then 
Q = qR,/SKH, = const, there is no folded zone, and the system (2.3), or 
the one which is its analog for the case p2 > pl, undergoes substantial 
simplification: it reduces to three equations for x, y, h, inasmuch as 
the second of Equations (2.1) is integrable by quadratures. On the basis 
of the latter equation we find 

P-9) 

where p1 is expressed by the first of the two equations (2.4), or if 
p2 2 p1 by the first of the equations (2.6). 

It must be noted that even if the fundamental relationships between 
the stresses and deformations are considered to be valid at arbitrarily 
large deformations, there will always exist some value Q= Q”., of the 
characteristic loading parameter which, if surpassed, makes the solution 
that we have suggested invalid, since it is then impossible to realize 
the equilibrium of the shell without violating the original assumptions. 
It is natural to expect that at Q = Q,,, a localization of the deforma- 
tion will take place with rise of “bubbles”, etc. - loss of stability of 
deformation in extension, analogous to the rise of a neck in a specimen 
in tension. Some of the simplest examples of dete~ining QmaX are 
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discussed in E 8,9 1, without, however, taking into account the change of 
shape of the shell preceding localization of deformation. 

We shall illustrate the considerations just presented with the 
example of a spherical shell acted upon by uniform internal pressure*. 

Denote by p the ratio of the radius R of the shell after deformation 
to the initial radius R,. & virtue of syannetry we must have 

P2 = Pl> Ez = 61 = In p 

From these relations we derive on the basis of (1.61, (1.8) in con- 
nection with the last of Formulas (1.12) and Equation (2.91, taken with 
A=1 

h=+ p1 = (3 In p)‘, Q = 2 ‘3;; p)” 

Using these formulas we can find the radius of the shell, its thick- 
ness and its principal stresses for any given loading. We easily find 
here also the aforementioned greatest possible loading Q,,,.,, as well as 
the corresponding values p = p, and h = he; so we obtain 

3. Shell of initially cylindrical shape. The problem under- 
goes here considerable simplification. We shall restrict ourselves to 
the study of the case that there is no folded zone. In this case we 
obviously have $ = l/2 n and 6 = A. It is convenient to take A = 1; then 
R, will represent the radius of the initial shape of the cylinder. The 
deformation is defined by the formulas 

s1 = In($-$-), e2 = hx, es = 1nIt 

The equilibrium equations assume the form 

-$ (xhpl) = pzh, g (xhpr sin rp) = Q (y) zc 

I. Equation (2.2 
(1.8) and (3.1) 

where Q(y) is expressed in the same way as in (2.1 
mains, of course, valid. We obtain on the basis of 
relation 

dx cos (p 
d7 = xh 

(3.21 

) re- 
the 

(3.3) 

(3.4) 

* we find in [lo ] 8n 8n8logoas problem treated for the case of finesr 

relation between stress snd deformation. 
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Passing to the argument ln x in the equations for the zone in tension, 
assumed to be solved for the derivative dh/de, and setting for abbrevi- 
ation In x = a, In h = /3; we find: 

for Pl 2 P2 

dp 
d%= - 

cl+aa+p 
2~ + a + 28 

(3.4) 

with 

p1 = (--a - 2g)p, pz = (--a - 2P)"_'(a - B) (3.5) 

Noting that g2 = 0 and consequently PI = 2p, when x = 1, at the 
attachment of the shell to the head, we write the solution of Equation 
(3.4) in the form 

aa + (B + CL) a + (B + V>" = (BiI + PI" 

where &, = In h, represents the value of In h at x = 1. 

For p2 > p1 we have 

(3.6) 

with 

dp = m+a3)-313+(~-~~) wit9 
da cl(a+28)-3a-(a---p)ia+2P) 

(3.7) 

p1 = -(a + 28) (cz - @"-1, p2 = (a - @)" 

Equation (3.7) can be integrated numerically. 

(3.8) 

We see that independently of the law of variation of pressure along 
the height, the fundamental system separates, the dimensionless thick- 
ness of the shell and the dimensionless principal stresses, expressed in 
terms of the radial coordinate, depend only on the parameter p, which 
characterizes the material, and the parameter h,, which takes care of 
the influence of all other factors (ratio of the dimensions, their abso- 
lute values, the pressure characteristics, etc.). 

Equations (3.4) and (3.7) are equivalent, respectively, to the cor- 
responding equations deriv&d in E4 1; the integral curves h(x), derived 
there and plotted for p = l/3, can therefore be directly used in this 
case even if Q#>const. 

We note that if use is made of the relationship (1.91, then the 
fundamental system for shells of initially cylindrical shape separates 
too. On the basis of (1.101, (1.81, (l.ll), (3.1) and of the first of 
Equations (3.2), we obtain, instead of (3.4) and (3.7), one equation 
(since the relationship between p1 and p2 is of no significance): 

4 
h”’ - 

~(a+2P)(2a+p)-3ap-t-2(za+P)(a*+~s+ap) 
p fa + Wz -I- 3a* + 2 (a + 33) V + /3* + @f 
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Ibis equation, 
In h, at a = 0. 

too, can be integrated numerically, setting /3 = @,, = 

Having the curves h(n), we can obtain the complete solution in a 

majority of actual problems by means of simple 
operations. 

On the basis of the second of Equations (3.2) 
we obtain 

(3.9) 

Ibis equation must be treated in conjunction 
with Equation (2.2), and the solution is obtained 
with the aid of Formulas (3.5) or (3.8) for pl. 
At the same time q is determined by means of the 
quadrature 

which follows from (3.3). 

(3.8 

the case of constant pressure the system 
to (2.2) separates too, and y is determined 

(3.10) 

by quadrature. Let us consider the case of pres- 

sure linearly varying with Y. Let 

q (Y) = k (B - Y) 

where k and B are given constants. We set 
Fig. 2. 

Then 

Q M =-$ (t’ - y> 

and on the basis of (3.91, (2.2) and (3.10) we find with the use of the 
argument y, which is more convenient for the computations 

sin cp = 2bpl h 
-._!&- [x (b - y) _i- -+ f z2dy] , $ := cot cp, 

0 

The system (3.11) can be solved numerically very simply. It should be 
noted, however, that as in the problem with q = const, the parameters 
h,, b and Q0 cannot be prescribed arbitrarily. For each type of problem 
we have first to find limits for possible values of these parameters. 
Reference [4 ] indicates in a detailed manner the method for determina- 
tion of such limits. 
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give below the results of the solution of the equilibrium problem 

shell fixed along the periphery of one of its heads; the shell is 
upon by pressure linearly varying along its height. The computa- 
were carried out for the cases 

values Q0 = 1.12 and h, = 0.8 at fc = 
b = 2 and b = 3 with the selected 

l/3. 

Figure 2 shows the shape, assumed by the shell, and its character- 
istic dimensions (referred to RI) in the first case; these dimensions 
are the initial length I,, the final length 1, the radius XB of the 
largest parallel circle and the distance 1 - yB of the latter from the 
upper fixed head. 

For the case b = 3, the following values have been computed: 

11 = 0.561, I = 0.675, q, =.1.069, 1 - yB = 0.375. 

The values of the dimensionless stresses and thickness at the points 
A, B, C (Fig. 2) are given in the following table: 

Points 
b=2 b=3 
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